Selective molecular sieving through porous graphene.
نویسندگان
چکیده
Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size-selective membranes because of its atomic thickness, high mechanical strength, relative inertness and impermeability to all standard gases. However, pores that can exclude larger molecules but allow smaller molecules to pass through would have to be introduced into the material. Here, we show that ultraviolet-induced oxidative etching can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves. A pressurized blister test and mechanical resonance are used to measure the transport of a range of gases (H(2), CO(2), Ar, N(2), CH(4) and SF(6)) through the pores. The experimentally measured leak rate, separation factors and Raman spectrum agree well with models based on effusion through a small number of ångstrom-sized pores.
منابع مشابه
Knudsen effusion through polymer-coated three-layer porous graphene membranes.
Graphene membranes have the potential to exceed the permeance and selectivity limits of conventional gas separation membranes. Realizing this potential in practical systems relies on overcoming numerous scalability challenges, such as isolating or sealing permeable defects in macroscopic areas of graphene that can compromise performance and developing methods to create high densities of selecti...
متن کاملReversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation
It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux...
متن کاملSubnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving.
Two-dimensional (2D) materials with atomic thickness and extraordinary physicochemical properties exhibit unique mass transport behaviors, enabling them as emerging nanobuilding blocks for separation membranes. Engineering 2D materials into membrane with subnanometer apertures for precise molecular sieving remains a great challenge. Here, we report rational-designing external forces to precisel...
متن کاملHighly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation.
Light isotopes separation, such as (3)He/(4)He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membra...
متن کاملHang Li Selective Hydrogen Separation Ultrathin , Molecular - Sieving Graphene Oxide Membranes
, 95 (2013); 342 Science et al. Hang Li Selective Hydrogen Separation Ultrathin, Molecular-Sieving Graphene Oxide Membranes for This copy is for your personal, non-commercial use only. clicking here. colleagues, clients, or customers by , you can order high-quality copies for your If you wish to distribute this article to others here. following the guidelines can be obtained by Permission to r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 7 11 شماره
صفحات -
تاریخ انتشار 2012